Buy 3 Get 4th Freeキャンペーン実施中 | 詳細はこちら >>
N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb
Primary Antibodies
Monoclonal Antibody

N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb #56593

Reviews ()
Citations (0)
N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb: Image 1

Total RNA purified from 293T cell extracts, either mock transfected (-) or transfected with a DNA construct expressing full-length human METTL3 (hMETTL3; +), were blotted onto a nylon membrane, UV cross-linked, and probed with N6-methyladenosine (m6A) (D9D9W) Rabbit mAb. The top panel shows the antibody detecting more methylated adenosine in cells overexpressing METTL3, while the bottom panel shows the membrane stained with methylene blue.

N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb: Image 2

Poly(A)+ RNA purified from 293T cell extracts, either mock transfected (-) or transfected with a DNA construct expressing full-length human METTL3 (+), were blotted onto a nylon membrane, UV cross-linked, and probed with N6-methyladenosine (m6A) (D9D9W) Rabbit mAb.

N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb: Image 3

Specificity of N6-methyladenosine (m6A) (D9D9W) Rabbit mAb was determined by ELISA. The antibody was titrated against an RNA oligo containing either unmodified adenosine or N6-methylated adenosine (m6A). As shown in the graph, the antibody only binds to N6-methylated adenosine (m6A).

N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb: Image 4

Specificity of N6-methyladenosine (m6A) (D9D9W) Rabbit mAb was determined by competitive ELISA. The graph depicts the binding of the antibody to a pre-coated m6A oligonucleotide in the presence of increasing concentrations of differentially modified adenosine. As shown in the graph, antibody binding is only blocked by free m6A nucleoside.

To Purchase # 56593S
Product # Size Price Inventory
100 µl

Supporting Data

MW (kDa)
Source/Isotype Rabbit IgG

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Product Usage Information

This antibody has been shown by an independent laboratory to work in RNA-IP-seq. Please use at an assay-dependent dilution.


Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb recognizes endogenous levels of N6-methyladenosine (m6A). This antibody has been validated using ELISA and dot blot assays and shows high specificity for m6A. This antibody does not cross-react with unmodified adenosine, N6-dimethyladenosine, N1-methyladenosine, or 2'-O-methyladenosine.

Species Reactivity:

All Species Expected

Source / Purification

Monoclonal antibody is produced by immunizing animals with N6-methyladenosine.


N6-methyladenosine (m6A) is a post-transcriptional modification found in various RNA subtypes. While the presence of m6A in RNA was described decades ago, the lack of tools has made interrogating the epitranscriptomic landscape challenging (1,2). With the emergence of new technologies such as miCLIP and NG-RNA-seq, researchers have been able to show that m6A is a biologically relevant mark in mRNA that is enriched in 3’ UTRs and stop codons (3,4). The m6A writer complex consists of a core heterodimer of methyltransferase-like protein 3 (METTL3) and methytransferase-like protein 14 (METTL14), and the additional regulatory proteins Virlizer/VIRMA and Wilms tumor 1-associated protein (WTAP) (5). METTL3 is the catalytic methyltransferase subunit and METTL14 is the target recognition subunit that binds to RNA (6). The Virilzer/VIRMA protein directs m6A methylation to the 3’ UTRs and stop codons, and WTAP targets the complex to nuclear speckles, which are sites of RNA processing (7). Less is known about readers and erasers of m6A, and while the fat mass and obesity-associated protein FTO was the first discovered m6A demethylase, subsequent studies demonstrated that this enzyme may prefer the closely related m6Am mark in vivo (8,9). ALKBH5 was later shown to be a bona fide m6A demethylase enzyme, contributing to the idea that the m6A modification is dynamically regulated (10). Readers of the m6A mark include the YTH protein family, which can bind to m6A and influence mRNA stability and translation efficiency (3,11-13). The m6A mark and machinery have been shown to regulate a variety of cellular functions, including RNA splicing, translational control, pluripotency and cell fate determination, neuronal function, and disease (1, 14-17). The m6A writer complex has been linked to various cancer types including AML and endometrial cancers (18,19). Additionally, m6A has been implicated in resistance to chemotherapy (20).

  1. Meyer, K.D. and Jaffrey, S.R. (2017) Annu Rev Cell Dev Biol 33, 319-42.
  2. Desrosiers, R. et al. (1974) Proc Natl Acad Sci U S A 71, 3971-5.
  3. Dominissini, D. et al. (2012) Nature 485, 201-6.
  4. Meyer, K.D. et al. (2012) Cell 149, 1635-46.
  5. Liu, J. et al. (2014) Nat Chem Biol 10, 93-5.
  6. Wang, X. et al. (2016) Nature 534, 575-8.
  7. Ping, X.L. et al. (2014) Cell Res 24, 177-89.
  8. Jia, G. et al. (2011) Nat Chem Biol 7, 885-7.
  9. Mauer, J. et al. (2017) Nature 541, 371-75.
  10. Zheng, G. et al. (2013) Mol Cell 49, 18-29.
  11. Schwartz, S. et al. (2013) Cell 155, 1409-21.
  12. Wang, X. et al. (2014) Nature 505, 117-20.
  13. Wang, X. et al. (2015) Cell 161, 1388-99.
  14. Batista, P.J. et al. (2014) Cell Stem Cell 15, 707-19.
  15. Batista, P.J. (2017) Genomics Proteomics Bioinformatics 15, 154-63.
  16. Patil, D.P. et al. (2016) Nature 537, 369-73.
  17. Wang, C.X. et al. (2018) PLoS Biol 16, e2004880.
  18. Barbieri, I. et al. (2017) Nature 552, 126-31.
  19. Liu, J. et al. (2018) Nat Cell Biol 20, 1074-83.
  20. Dai, D. et al. (2018) Cell Death Dis 9, 124.


法的な権限を与えられたCSTの担当者が署名した書面によって別途明示的に合意された場合を除き、 CST、その関連会社または代理店が提供する製品には以下の条件が適用されます。お客様が定める条件でここに定められた条件に含まれるものを超えるもの、 または、ここに定められた条件と異なるものは、法的な権限を与えられたCSTの担当者が別途書面にて受諾した場合を除き、拒絶され、 いかなる効力も効果も有しません。

研究専用 (For Research Use Only) またはこれに類似する表示がされた製品は、 いかなる目的についても FDA または外国もしくは国内のその他の規制機関により承認、認可または許可を受けていません。 お客様は製品を診断もしくは治療目的で使用してはならず、また、製品に表示された内容に違反する方法で使用してはなりません。 CST が販売または使用許諾する製品は、エンドユーザーであるお客様に対し、使途を研究および開発のみに限定して提供されるものです。 診断、予防もしくは治療目的で製品を使用することまたは製品を再販売 (単独であるか他の製品等の一部であるかを問いません) もしくはその他の商業的利用の目的で購入することについては、CST から別途許諾を得る必要があります。 お客様は以下の事項を遵守しなければなりません。(a) CST の製品 (単独であるか他の資材と一緒であるかを問いません) を販売、使用許諾、貸与、寄付もしくはその他の態様で第三者に譲渡したり使用させたりしてはなりません。また、商用の製品を製造するために CST の製品を使用してはなりません。(b) 複製、改変、リバースエンジニアリング、逆コンパイル、 分解または他の方法により製品の構造または技術を解明しようとしてはなりません。また、 CST の製品またはサービスと競合する製品またはサービスを開発する目的で CST の製品を使用してはなりません。(c) CST の製品の商標、商号、ロゴ、特許または著作権に関する通知または表示を除去したり改変したりしてはなりません。(d) CST の製品をCST 製品販売条件(CST’s Product Terms of Sale) および該当する書面のみに従って使用しなければなりません。(e) CST の製品に関連してお客様が使用する第三者の製品またはサービスに関する使用許諾条件、 サービス提供条件またはこれに類する合意事項を遵守しなければなりません。

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.